An atomistic mechanism study of GaN step-flow growth in vicinal m-plane orientations.
نویسندگان
چکیده
Elucidation of homoepitaxial growth mechanisms on vicinal non-polar surfaces of GaN is highly important for gaining an understanding of and control thin film surface morphology and properties. Using first-principles calculations, we study the step-flow growth in m-plane GaN based on atomic row nucleation and kink propagation kinetics. Ga-N dimer adsorption onto the m-plane is energetically more favorable than that of Ga and N isolated adatoms. Therefore, we have treated the dimers as the dominant growth species attached to the step edges. By calculating the free energies of sequentially attached Ga-N dimers, we have elucidated that the a-step edge kink growth proceeds by parallel attachment rather than by across the step edge approach. We found a series of favorable configurations of kink propagation and calculated the free energy and nucleation barriers for kink evolution on five types of step edges (a, +c, -c, +a + c, and -a - c). By changing the chemical potential μGa and the excess chemical potential Δμ, the growth velocities at the five types of edges are controlled by the corresponding kink pair nucleation barrier E* in their free energy profiles. To explore the kink-flow growth instability observed at different Ga/N flux ratios, calculations of kink pairs on the incompact -c and +c-step edges are further performed to study their formation energies. Variations of these step edge morphologies with a tuned chemical environment are consistent with previous experimental observations, including stable diagonal ±a ± c-direction steps. Our work provides a first-principles approach to explore step growth and surface morphology of the vicinal m-plane GaN, which is applicable to analyze and control the step-flow growth of other binary thin films.
منابع مشابه
Strain relaxation in GaN grown on vicinal 4H-SiC(0001) substrates
The strain of GaN layers grown by Metal Organic Chemical Vapor Deposition (MOCVD) on three vicinal 4H-SiC substrates (0, 3.4 and 8 offcut from [0001] towards [11-20] axis) is investigated by X-ray Diffraction (XRD), Raman Scattering and Cathodoluminescence (CL). The strain relaxation mechanisms are analyzed for each miscut angle. At a microscopic scale, the GaN layer grown on on-axis substrate ...
متن کاملStep-controlled strain relaxation in the vicinal surface epitaxy of nitrides.
On-axis and vicinal GaN/AlN/6H-SiC structures grown under identical conditions have been studied by x-ray diffraction and transmission electron microscopy to demonstrate the distinctive features of vicinal surface epitaxy (VSE) of nitrides on SiC. In VSE, the epilayers are tilted from the substrate due to the out-of-plane lattice mismatch (Nagai tilts), and the in-plane mismatch strains are mor...
متن کاملThe Dynamics of Thin Film Growth: a Modeling Study
For closed-loop control of thin film deposition, one would like to directly control film properties such as roughness, stress, or composition, rather than process parameters like temperatures and flow rates. This requires a model of the dynamic response of film properties to changes in process conditions. Direct atomistic simulation is far too slow to be used in this capacity, but a promising a...
متن کاملInstability and wavelength selection during step flow growth of metal surfaces vicinal to fcc(001).
We study the onset and development of ledge instabilities during growth of vicinal metal surfaces using kinetic Monte Carlo simulations. We observe the formation of periodic patterns at [110] close packed step edges on surfaces vicinal to fcc(001) under realistic molecular beam epitaxy conditions. The corresponding wavelength and its temperature dependence are studied in detail. Simulations sug...
متن کاملStudy of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model
In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 42 شماره
صفحات -
تاریخ انتشار 2016